Closed form numerical solutions of variable coefficient linear second-order elliptic problems
نویسندگان
چکیده
منابع مشابه
A Globally Convergent Numerical Method for Some Coefficient Inverse Problems with Resulting Second Order Elliptic Equations
A new globally convergent numerical method is developed for some multidimensional Coefficient Inverse Problems for hyperbolic and parabolic PDEs with applications in acoustics, electromagnetics and optical medical imaging. On each iterative step the Dirichlet boundary value problem for a second order elliptic equation is solved. The global convergence is rigorously proven and numerical experime...
متن کاملPositive solutions to second order semi-linear elliptic equations
Here G ⊆ R (N ≥ 2) is an unbounded domain, and L is a second-order elliptic operator. We mainly confine ourselves to the cases F (x, u) = W (x)u with real p and W (x) a real valued function on G, and F (x, u) = g(u) with g : R→ R continuous and g(0) = 0. The operator L = H − V is of Schrödinger type, namely V = V (x) is a real potential and H = −∆ or more generally H = −∇ · a · ∇ is a second or...
متن کاملSolutions to general quasilinear elliptic second order problems
We study the second order quasilinear equation (1) Qu = f(x; u; D 1 u; :::; D n u) with Dirichlet conditions. We obtain existence and uniqueness results in the Sobolev Space W 2;p. We also prove that, in certain cases, the set of solutions of (1) is a connected subset of W 2;p .
متن کاملEnforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems
The maximum principle is a basic qualitative property of the solution of second-order elliptic boundary value problems. The preservation of the qualitative characteristics, such as the maximum principle, in discrete model is one of the key requirements. It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D. In this pa...
متن کاملLinear Elliptic Equations of Second Order
The classical Schauder type results on C-regularity of solutions are exposed for linear second order elliptic equations with Hölder coefficients. Our approach is based on equivalent seminorms in Hölder spaces C, which are similar to seminorms introduced by S. Campanato [1]. Under this approach, the C-estimates for solutions are derived from the maximum principle and the interior smoothness of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2014
ISSN: 0096-3003
DOI: 10.1016/j.amc.2014.04.025